Available online at www.sciencedirect.com
x . JOURNAL OF
ScienceDirect SOUND AND

VIBRATION

ELSEVIER Journal of Sound and Vibration 315 (2008) 176-196

www.elsevier.com/locate/jsvi

Nonconservative stability problems via generalized
differential quadrature method

Alessandro Marzani, Francesco Tornabene, Erasmo Viola™

DISTART, Department of Structural Engineering, University of Bologna, Viale Risorgimento 2, Bologna I-40136, Italy

Received 8 June 2007; received in revised form 10 December 2007; accepted 23 January 2008
Handling Editor: A.V. Metrikine
Available online 12 March 2008

Abstract

In this paper, the generalized differential quadrature (GDQ) method is applied to solve classical and nonclassical
nonconservative stability problems. Various cantilever beams subjected to slope-dependent forces are considered. First, the
governing differential equation for a nonuniform column subjected to an arbitrary distribution of compressive
subtangential follower forces is obtained. The effect of the variability of the mechanical properties along the beam length is
also considered. Then, the application of the GDQ procedure leads to a discrete system of algebraic equations from which
the system critical loads can be obtained by solving an associated eigenvalue problem. A parametrical study for different
levels of nonconservativeness of the applied load is carried out for some classical benchmark cases such as Beck’s,
Leipholz’s and Hauger’s column problems. Finally, applications to geometrically and mechanically tapered beams
subjected to nonpotential subtangential follower forces are investigated as nonclassical cases.

It has been proved that the method can efficiently solve structural nonconservative elastic problems and, more in
general, problems governed by a nonsymmetric system of algebraic equations.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

According to the critical overview given by Elishakoff [1], and in some of the papers herein quoted, the
elastic stability problem for a cantilever column subjected to a compressive concentrated follower force at the
tip end was firstly investigated by Reut in 1939. By applying the Euler static criterion of stability, Reut could
not find any critical load for the system. Nikolai, observing the work of Reut, recognized the deficiency of the
static criterion and the need of using a dynamic approach to study the stability of such nonconservative
problem. He demonstrated his hypothesis finding with a dynamic criterion the critical load for a different
problem that, in accordance with Reut, had only stable solution. Independently of the studies of Reut and
Nikolai, Pfliiger in 1950, investigating the stability of a column under the action of a statically tip follower
force, came to the paradoxical conclusion that a column was stable for any bounded follower force. Few years
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Nomenclature Oy dimensionless load parameter for the
mechanical tapered beam
A beam cross-section area On dimensionless load parameter for
E modulus of elasticity Haugher’s problem
1 beam second area moment of inertia Or dimensionless load parameter for Lei-
K, total stiffness matrix of the boundary pholz’s problem
points with dimension 4 x A~ 0o dimensionless load parameter for the
K, total stiffness matrix of the domain case with quadratic law distribution of
points with dimension (A" —4) x A~ subtangential load
K¢ elastic stiffness matrix of the domain r cross-section radius of the circular beam
points with dimension (A" —4) x A" t time
K? geometric stiffness matrix of the domain T system kinetic energy
points with dimension (A" —4) x A~ v beam deflection
K" nonconservative stiffness matrix of V beam transverse displacement
the domain points with dimension w. conservative work
(N —4)x N 0W,. nonconservative virtual work
L beam length X beam axis
LM Lagrange interpolating polynomial (first o nonconservativeness parameter
derivative) /35-;’) nth-order weighting coefficient at the ith
M, diagonal mass matrix of the domain points point calculated for the jth point
with dimension (A" —4) x (N — 4) y mechanical tapered parameter
N internal axial load o vector of displacements at the grid points
N total number of the sampling points with dimension A" x 1
P modulus of the subtangential concen- s vector of displacements at the boundary
trated compressive force points with dimension 4 x 1
q law of distribution of the subtangential oy vector of displacements at the domain
distributed force points with dimension (A" —4) x 1
qo modulus of the subtangential distributed n geometrical tapered parameter
force at x =0 U material density
qs distribution of the subtangential force @ beam cross-section rotation
Osp dimensionless load parameter for Beck’s ] system elastic energy
problem w system eigenfrequency
Opr  dimensionless load parameter for the Q dimensionless eigenfrequency parameter
geometrical tapered beam

later, Ziegler, by applying the dynamic approach to a perfect two-degrees-of-freedom system subjected to the
action of a concentrated compressive follower force, showed that the system would lose its stability
dynamically. Finally, Beck [2], under the guidance of Ziegler, proved in 1952 that Euler’s column tangentially
loaded was susceptible to instability. It was thus recognized that elastic systems could lose stability not only
via an instantancous and irreversible change of configuration (divergence) but also via an exponential
increasing motion with time (flutter).

This pioneering work established the inadequacy of the static approach to characterize the stability of some
nonconservative systems, for which the dynamic approach was exclusive. Over the next 20 years
approximately, the revolutionary outcome was investigated in depth and confirmed by numerous scientists
such as Bolotin [3], Timoshenko and Gere [4], Nemat-Nasser [5] and Leipholz [6].

Afterwards, some investigations on the stability of an elastic column subjected to both follower
(nonconservative) and axial (conservative) compressive forces were carried out aimed at clarifying the
difference between conservative and nonconservative problems. For example, McGill [7] studied the
effect of column weight on the flutter load of a cantilever beam subjected to uniform distribution of
follower forces. Sundasarajan [8] introduced a nonconservativeness parameter, as the ratio between the
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follower and axial component of tangential forces, to explore the change in stability regions between
divergence and flutter. Such studies showed new results that were not observed before in studying purely
nonconservative systems.

Since then, many works have contributed to the understanding of nonconservative stability problems.
Stability of discrete and continuous systems such beams, plates and cylinders under the action of tangential
and subtangential follower forces, has been largely studied. Critical comprehensive literature reviews on this
subject are given by Elishakoff [1] and Langthjem and Sugiyama [9].

In the above papers it is shown that several analytical and numerical methodologies have been used
to solve nonconservative stability problems; however, it also emerges that the generalized differential
quadrature (GDQ) method has been scarcely applied for solving such stability problems. The essence of this
numerical method is that partial or total derivatives of a smooth function are evaluated by a weighted sum of
function values at discrete points. The weighting coefficients are not related to a special physical problem
and only depend on the assumed interpolating basis functions and on the spatial distribution of the discrete
points [10].

The GDQ method has been proved to be well suited for solving self-adjoint boundary value problem
governed by linear differential equations. For example, two of the authors have extensively used this technique
for solving static and dynamic problems on arch-like and shell structures [11-14].

The GDQ technique has been widely used also for solving self-adjoint stability problems. For instance
Sherbourne and Pandy [15] investigated the buckling of composite beams and plates, Gutierrez et al. [16]
characterized the buckling of circular thin plates, Mirfakhraei and Redekop [17] studied via GDQ the stability
of circular cylindrical shells. However, to the author’s best knowledge only De Rosa and Auciello [18] applied
the GDQ method to characterize the stability of a nonself-adjoint problem, namely a foundation beam
compressed by concentrated subtangential forces acting at the beam’s ends.

In this paper, the GDQ technique is applied to nonconservative stability beam problems by considering
several different geometrical, mechanical and loading conditions.

Firstly, three well-known nonconservative stability problems named Beck’s, Leipholz’s and Hauger’s
column are investigated. Secondly, the stability of a uniform column loaded by a distribution of subtangential
forces with magnitude that varies along the beam length with a quadratic law is studied. Finally, a
parametrical study on the stability of geometrical and mechanical tapered beams under the action of
subtangential forces are proposed as nonclassical cases.

A unified governing differential equations is obtained via the extended form of Hamilton’s principle and
then discretized via GDQ to an ordinary nonsymmetric algebraic system of equations. The study of the
associated eigenvalue problem leads to a system divergence or flutter instability.

In order to verify the accuracy of the proposed formulation in solving nonself-adjoint stability problem,
when possible, the results of this paper have been compared to literature references.

The main outcome of the paper is that the GDQ method can solve with high accuracy and efficiency
structural nonconservative elastic problems and, more in general, problems governed by a nonsymmetric
system of algebraic equations.

2. Governing differential equations

In this section, the unified differential governing equation and boundary conditions for an elastic cantilever
Euler—Bernoulli beam of length L, with varying mechanical and geometrical properties along the beam length,
loaded by conservative and nonconservative forces is obtained by means of Hamilton’s variational principle.

Let us assume a Cartesian reference coordinate x—y—z system such that the x-axis coincides with the
geometrical axis of the nondeformed beam and the y- and z-axis are parallel to the principal axes of the cross-
section of area A = A(x). It is assumed that the beam deflects in the x—y plane and 7 = I(x) is the second area
moment of inertia around the z-axis (see Fig. 1(a)). The material density 4 = u(x) and the modulus of elasticity
E = E(x) can also vary along the beam length.

The deflection of the column is assumed to be small, so that, if v = v(x, ?) is the beam displacement at a
point of abscissa x and time ¢ along the y-axis, the angle ¢ = ¢(x, ) between the x-axis and the tangent to the
elastic line of the beam can be approximated by ¢ = 0v/0x, as represented in Fig. 1(b).
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Fig. 1. (a) Cantilever beam subjected to a concentrated compressive subtangential force at the beam’s end and to an arbitrary distribution
of subtangential forces along the beam. (b) Schematic representation of the effect of the nonconservative parameter « on the loads applied
to beam.

The column is subjected to a compressive subtangential concentrated force P, acting at x =L, and to a
distribution of compressive subtangential force g,(x) = g,q(x), where g, represents the magnitude of ¢, at
x = 0 and ¢(x) is the distribution law of the subtangential force.

The grade of nonconservativeness of both subtangential force types, P and g¢,, is defined by the
nonconservativeness parameter o, that sets the amount of tangential (follower) components of the forces for a
variation of the beam configuration. In particular, as it can be seen in Fig. 1(b), a¢ denotes the angle between
the x-axis and the direction of the compressive subtangential force. For & = 0 pure axial conservative forces
are applied on the system, while pure tangential forces are accounted when « = 1. Parametrical stability
studies can thus be carried out by varying the parameter « from 0 to 1. In literature, o is usually referred as the
nonconservativeness parameter.

The governing differential equation of the system can be derived from the extended form of Hamilton’s principle:

15) 5]

/ o(T — @+ Wc)dt+/ OWpedt =0, (1)
f 3|

where T and @ are the kinetic and elastic potential energy of the beam, respectively, while W, and 6 W,

represent the conservative work and the nonconservative virtual work of the applied loads. The above

potential and work terms take the following aspect:

1 (E (du(x, )\

T:E/O ,uA( o ) dx, 2)
1 [t %v(x, 1) ?
[t (e, 0\

W(,_/O NE( o )dx, )

where N is the compressive axial force at a generic coordinate x, calculated as

L
N:/ q,dx + P. (5)
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The transverse components of the follower forces are nonconservative for which any potential energy can be
defined. The nonconservative virtual work of these transverse components can be expressed as

L
OWype = — / q, sin (ap(x, 1)) ov(x, t)dx — P sin (ap(L, ) ov(L, )
0
L
_ /0 4,0 (a”gg ’)) Sv(x, 1) dx — Po (a”(al; ’)) Su(L, 1), ©6)

Taking the variations of the energy and work terms (2)—(4) and (6), and substituting them into the extended
Hamilton’s principle (1), yields

[ AL (a(G)e(5) - 1 G)ole) + ¥ (&)

— g, (@> 5v> dx — Px (6”(L’ l)) So(L, z)} dr =0, %)
Ox Ox

where v has been used to indicate v(x, f). Integrating by parts and considering that the variational formulation
(7) must be valid for any interval of time, leads to

L
/ (—pAv — EIVY — 2(EI' + E'TW" — (EI" + E'I + 2E'T')YW' — Nv" — (o — 1)g,v')dvdx
0

— [EIV'SV]E + [(NV + (EIV"Y) $v]§ — [P/ dv]* = 0, 3)

where the prime stands for partial derivative with respect to x, the overdot means partial derivative with
respect to time ¢ and having considered that N = —g,. Since the variations are arbitrary, their coefficients
must vanish independently in order to make the entire expression (8) vanish. Therefore, the following field
equation and boundary conditions are obtained:
wAb + EI" 4+ 2(EI' + E'TW" + (EI" + E'I + 2E'T')W' + NV + (o — 1)gq, v’ =0,
(NV + EIV" + EI'V" + E'IV")ov),._, = 0,
[EIV 60,y = 0,
[(N — Po)v' + EIV" + EI'V" + E'Iv")ov],_; = 0,
[E[V'6v],_; = 0. )
Assuming a time harmonic form for the displacement
u(x, 1) = V(x)e™, (10)
where w is the circular frequency of vibration, and substituting into Eq. (9) leads to the final form of the
differential governing field equation:
EIVY £ 2(EI' + EDV" + (EI" + E'I + 2E'T)VV" + NV" 4 (0. — 1)q, V' = 0*uAvV (11)
with the general static and kinematic boundary conditions:
(NV'+ EIV" + EI'V"+ E'TV")6V],—, = 0,
[EIV"6V'],—y =0,
[((N —P)V' + EIV" + EI'V" + E'TV")6V],_; =0,
[EIV"6V'],._; = 0. (12)

3. GDQ methodology

In this section, the GDQ method is first reviewed and then applied to represent the governing differential field
equation (11) and boundary conditions (12) as a set of algebraic equations defined at some discrete points.
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3.1. GDQ review

The essence of the GDQ method is that the nth-order derivative of a smooth one-dimensional function f{x)
defined over the interval [0, L] at the ith point of abscissa x;, can be approximated as

N
= B, (13)

X=X; Jj=1

d"f (x)
dxn

where ﬁg?) is the nth-order weighting coefficient at the ith point calculated for the jth sampling point of the
domain. In Eq. (13) /" is the total number of the sampling points of the grid distribution and f{x)) is the value
of the function at the jth point.

Some simple recursive formulas are available for calculating nth-order derivative weighting coefficients ﬁg’)
by means of Lagrange polynomial interpolation functions [10]. The weighting coefficients for the first-order
derivative are

L(l)(x')
(1) i .. .,
= Lj=1,2,..., 4, i#], 14
Py v — )LDy / (14)
N
B =— E ﬁ,»”, Lj=12,...,4, i=}j. (15)

J=lj#i
In Eq. (14) the first derivative of Lagrange interpolating polynomials at each point x;, k = 1,...,./", is
N
LY = ] Gx—x), k=1,...,.4" (16)
I=1i#k

For higher order derivatives (n = 2,3,...,.4/" — 1), one gets iteratively

(=1
‘BEJ’?):n< 5?—1)135]1)_)5”)6), Lj=1,2,...,/, i#], (17)
i
N
B == > B, ij=12..4, i=]. (18)
J=lj#i

Throughout the paper, the Chebyshev—Gauss—Lobatto grid point’s distribution (Fig. 2) is assumed, for
which the coordinates of the grid points x; along the beam length are

L i—1 .
xi:§|:1—COS<JV_ITC>:|, 1—1,27---a=/t/n (19)

where L is the length of the column.
It has been proven that for the Lagrange interpolating polynomials, the Chebyshev—Gauss—Lobatto
sampling points rule guarantees convergence and efficiency to the GDQ technique [10-14].

Grid point distribution

_A
", X; X
*-r——2 * 4 . & & *—=-0
X N _/ Xy
~
(b) Boundary point (a) Domain points (b) Boundary point

Fig. 2. Chebyshev—Gauss—Lobatto grid point distribution with /" = 11: (a) domain points and (b) boundary points.
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3.2. Discrete governing equations

The numerical procedure illustrated above enables one to write the governing equation and boundary
conditions in discrete form, transforming every space derivative into a weighted sum of nodal values. The
general differential governing equation (11) is represented via GDQ technique at the i = 3,4,...,.4" — 2 grid
domain points (Fig. 2) as

Eil; Zﬁ(“)V +2<E Zﬁ“’l +1; Zﬁ“’E) Z BV,
=
+ <E,»Zﬁ§f)1j +1,-ZB§,»2)EJ- + 22/35}% Zﬁ“’[) Z BV,
= = = =

+ N; Z BV + (@ — Day, Z BV = AV, (20)

]_

where u;, E;, A;, I, N;, q,; and V; indicate the mass density, Young’s modulus, the cross-sectional area, the
second moment of inertia, the axial force, the modulus of the subtangential force and the column deflection at
the ith grid point of abscissa x;, respectively. For a cantilever beam clamped at x = 0, the boundary conditions
(12) can be expressed via GDQ approximation at the first grid point i =1 as

Vi=0,

Zﬂ“)V =0 (21)

]_

and at the last i = 4" grid point (x = L) as

A A
(N — Pa) Z B+ Ely Y BV, + <E CSEN Z BILE ) Zﬁ@ V=0,
j=1 J=1 J=1 J=1

J=

E Ly ZB(Z)V—O (22)

Note that in this case any discrete equation is formulated at the grid points i = 2 and .4#" — 1 [10]. Indicating
more synthetically with

N
K¢ = Eid ;B +2 (E,- S B+ Z BVE, | B )
=1

[ =3,4,...,. N/ =2,
(E Z'B(Z)I +1; Z:B(Z)E +2Z[))(1)E Zﬁ(l)l_> (2) l it

=120 (23)
= NP,
K = (o( — g, B
ij ailij >
the (A" — 4) x A" stiffness matrices and with
M, = diag[M3A3 UgAs - e 3Ars py_Ano (24)

the (A —4) x (/" — 4) mass matrix, the A4 — 4 field equations defined by Eq. (20) can also be written in
matrix form as

K6 = 0’M3,. (25)
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In Eq. (25) the stiffness matrix K; = K° + K9 4+ K" is the sum of the elastic stiffness properties of the beam
defined by the matrix K the geometric stiffness contribute KY induced by the conservative load and the
nonconservativeness stiffness of the beam K" related to the nonconservative loads.

Also,in Eq. 25)8=[V1 Va2 - Vi V./V}T is the A4~ x 1 vector of unknown displacements at the

grid points, while §; = [V3 Vo o Vs V./4f"—3]T collects only the (/" —4) x 1 unknown displace-
ments at the domain points.
The four boundary conditions described in Egs. (21) and (22) are also written in synthetic vector notation as

K;3 =0, (26)
where the 4 x /" matrix K, is defined as
1 0 0 0
. iﬁ? iﬁ? = i‘&?‘»__n ,/j(l?‘"’ | o
A1 N2 K- NN
EvlyB?y EvlyfDy o EvIepS oy Evliepd,
and where the jth k4 coefficient is defined as
o= ratl £t (£ S ) (e ) e
j=1 =1

The discrete field and boundary conditions can be collected as .4~ algebraic equations in the ./ unknowns
nodal displacements as

K, 0 -

Kd o a)szSd ' ( )

In order to calculate the natural frequencies of the structure, Eq. (29) need to be reorganized in the

following form:

Ky, K d 00 )

bt bd bl _ o b , (30)
Ko K| |0 0 My ||d

where the subscripts b and d, refer to the system degrees of freedomT at the boundaries and in the

beam domain (Fig. 2), respectively, and &, = [Vl Vo Voo V./V] . Kinematical condensation of

the nondomain degrees of freedom leads to the final equation for the computation of the system
eigenfrequency:

(Kas — KapK; Kpa)dg = 0’ M8, (€29)

4. Application to some known nonconservative problems

In this section, Beck’s column problem, Leipholz’s column problem and Hauger’s column problem are
studied. All these cases are characterized by a uniform cross-section column and clamped-free boundary
conditions. It follows that the elastic stiffness matrix K° and mass matrix My are identical for all cases, while
the geometric K? and nonconservative K" stiffness matrices as well the boundary conditions vary and can be
derived from Egs. (23) and (27) by simply setting the specific load conditions.

4.1. Beck’s column

Beck’s column problem consists in a slender cantilever beam of uniform cross-section, clamped at the base
(x = 0) and loaded by a compressive concentrated follower force, P, acting at the top of the beam (x = L),
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as shown in Fig. 3(a). Based on Eq. (5), the column is subjected to a constant compressive axial force
N(x) = P. Therefore, in this case the values of A4;, I, u;, E; and N; are the same at the grid points. The
nonconservative matrix K™ is null because ¢,(x) is zero and the nonconservativeness of the system is retained
by the third boundary condition only.

In Fig. 4 are represented the eigenfrequency curves for Beck’s column in terms of dimensionless load

Qp = PL*/EI and eigenfrequency Q = \/uAL*®?/EI parameters, obtained by using a Chebyshev—

Gauss—Lobatto grid distribution with 51 points. In addition to the case treated by Beck, for which « = 1.0,
the cases for o = 0.0,0.1,...,0.9 are also represented.

For P = 0 the first two natural frequencies of the unloaded column are obtained. For increasing magnitude
of the load the second eigenfrequency Q, of the system is always decreasing while the first eigenfrequency Q,
may rise or decrease depending on the value of the nonconservativeness parameter o. This leads to both type
of instability: divergence and flutter. In particular, Beck’s column loses its stability via divergence for 0 <0.4,
for which the ©; branches reach zero frequency at the critical divergence load points, and by flutter for «>0.6,
where the Q; and @, branches approach each other becoming coincident at the critical flutter load points. As
confirmed by Rao and Rao [19] by an exact analysis, for o approaching the value of 0.5 Beck’s column might
be instable for divergence (¢ —0.57) or flutter (x—0.5") with two distinct values of the critical load. Therefore
the value o = 0.5 denotes the edge between the divergence and flutter instability for Beck’s problem signing the
limit of applicability of the static criterion in the stability study. It should be noted that, while the critical load

(a) T (b) (c) (d)
Ir ] I

—

ES

— )V — — Y,V — Vv — )V
A\ B\ SR\ —

Fig. 3. (a) Beck’s problem, (b) Leipholz’s problem, (c) Hauger’s problem and (d) Cantilever beam with quadratic distribution of the
subtangential forces.

QB/n2

Fig. 4. Eigenfrequency curves for Beck’s column for various values of the nonconservative parameter o.
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Table 1
Critical loads Qp  for the Beck’s column for various values of the nonconservativeness parameter o

o [19] [20] [21] [22] GDQ*
0.0 2.4674 2.4674 2.4674 2.4675
0.1 2.8296 2.830 2.830 2.8296
0.2 3.3251 3.325 3.325 3.3251
0.3 4.0550 4.055 4.055 4.0551
0.4 5.2924 5.292 5.293 5.2925
0.5 9.8696, 16.0524 9.870 9.872 9.8700, 16.0525
0.6 - - 16.27 16.2590
0.7 - - 16.80 16.78750 16.7875
0.8 - - 17.60 17.58923 17.5891
0.9 - - 18.68 18.66348 18.6684
1.0 - 20.05 20.07 20.05102 20.05095

#Results obtained by the proposed formulation using a 51 points Chebyshev—Gauss—Lobatto grid distribution.

for divergence can be found by a static criterion, the flutter load can only be obtained by approaching the
problem dynamically.

It can be observed from Fig. 4 that the critical load, either for divergence or flutter, increases for increasing
values of o from 0 to 1, and so the pure conservative case (¢ = 0) is the more susceptible of instability.

In Table 1 the GDQ critical loads are compared with the solutions obtained by Leipholz [20] through a
classical Galerkin method, with those proposed by Kikuchi [21] via a finite element technique, and with the
exact solutions given by Rao and Rao [19]. It can be seen that the GDQ results well approximate the exact
solutions for 0.0<a<0.4.

At a = 0.5, the GDQ solution becomes unstable when the ©Q, eigenfrequency branch is approaching zero
value. In particular, the Q; eigenfrequency branch presents an oscillating behaviour crossing the zero
frequency axis several times, so that the critical divergence load cannot be distinctively determined. The
divergent critical load for o = 0.5 given in Table 1, Qp = 9.8700, has been obtained as the load corresponding
to the minimum of the 10th-order polynomial used to interpolate the nonsmooth oscillating curve.

For a pure follower force, o« = 1.0 (Beck’s problem), the present formulation calculates the critical flutter
load as Qp = 20.0509. This value is very close to the one given by Beck, i.e. Qp = 20.051, proving the
accuracy of the GDQ method versus other numerical techniques. For example, Elfelsoufi and Azrar [23], by
using a basis of polynomial functions and 60 points to discretize the domain, recently estimated Beck’s critical
load with a poorer approximation (i.e. Qp = 20.0625) if compared to the present formulation.

4.2. Leipholz’s column

Leipholz’s column problem, as shown in Fig. 3(b), consists in a uniform cantilever beam clamped at x =0
and loaded by a uniform distribution of compressive subtangential forces ¢,(x;) = g, (the tip force P = 0). By
using Eq. (5), the axial force at the ith grid point of coordinate x; results N(x;) = q,(L — x;). The
eigenfrequency curves for Leipholz’s column represented in Fig. 5 are obtained by the proposed formulation
using a Chebyshev—Gauss—Lobatto grid with 51 points. The dimensionless load parameter in this case is
assumed as Q; = q,L*/EI while the eigenfrequency parameter is the same as defined in the previous case. It
can be seen that for increasing load magnitude, while the first eigenfrequency Q; might decrease or increase by
varying the nonconservativeness parameter, the second eigenfrequency €, is always decreasing and slightly
influenced by the different values of a. The system is unstable for divergence when «<0.5 and for flutter for
o>0.5. Also for Leipholz’s column the case o = 0.5 denotes the separation between divergence and flutter
instability. In fact, for o = 0.5 the Q; eigenfrequency curve becomes unstable while approaching zero
frequency value. In line with Beck’s example, it can be assumed that approaching this value of the
nonconservativeness of the applied loads the system presents the two different forms of instability with two
different critical values. The divergence critical load for «<<0.5 can be obtained via static criterion while the
critical flutter load for «>0.5 can only be calculated by means of the dynamic approach.
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Fig. 5. Eigenfrequency curves for Leipholz’s column for various values of the nonconservative parameter o.

By observing the eigenfrequency curves of Fig. 5 it can be seen that the critical load is not strictly monotonic
for increasing o, as seen for Beck’s problem. In fact, divergence load increases for increasing values of the
parameter o from 0.0 to 0.5, while the critical flutter load decreases for increasing o from 0.6 to 1.0. The
maximum critical load for this system correspond to the flutter load for & = 0.5.

For o = 1.0 the critical GDQ flutter load, Q; = 40.0537, compares extremely well with the solution
Q.. = 40.05 found by Leipholz [6]. In addition, this result is competitive if compared with other approximate
solutions as specified in Ref. [24]: for example, the Galerkin solution by Leipholz yielded Q; == 40.7, the finite
difference solution by Leipholz yielded Q; = 38.6, the one of Sugiyama et al. gave Q; = 39.2, Hauger
reported a value of Q; = 40.7 and Elishakoff reported Q; = 41.206.

4.3. Haugher’s column

Hauger’s column model consists in a uniform cantilever beam clamped at x = 0 and loaded by a triangular
distribution of compressive subtangential forces, ¢,(x) = ¢o(L — x), as shown in Fig. 3(c). The internal axial
force at the generic grid point of abscissa x;is N(x;) = ¢o(L — xi)? /2. The eigenfrequency curves represented in
Fig. 6 for o ranging from 0.0 to 1.0 are obtained by using a Chebyshev—Gauss—Lobatto grid with 51 points.
The dimensionless load parameter is assumed as Qy; = ¢,L*/EI while the dimensionless frequency parameter
is the same as defined above. The stability behaviour of this column is similar to the one of Leipholz’s column,
for which the maximum critical load is reached for o = 0.5 when the system is unstable for flutter. The
eigenfrequency curves in Fig. 6 are coincident with those obtained via a displacement-based finite element
formulation by Ryu et al. [25] and later by two of the authors [26].

In the case of o = 1.0, the GDQ flutter load for Hauger’s column Q= 150.6416 is presented in Table 2
along with those calculated for Beck’s and Leipholz’s column and with those of several referenced papers. The
table shows clearly the accuracy of the GDQ method in the calculation of the critical flutter load (¢ = 1.0) for
the three classical stability problems considered.

4.4. Study on procedure convergence and different boundary conditions

In order to investigate the GDQ procedure convergence, the critical flutter load for the three classical
problems in the case o = 1.0 was investigated by varying the number of grid points. Results are collected in
Table 3 increasing the number of points of the Chebyshev—Gauss—Lobatto grid distribution from 13 up to 51.
It can be seen that the proposed GDQ formulation well captures the dynamic behaviour of the system for
flutter instability by using only 21 points, for which the errors on the critical flutter loads with the respect to
the exact values are smaller than the 0.1%. It can also be seen that for all the considered systems, the
formulation is stable while increasing the number of points and that the use of 51 points guarantees
convergence of the procedure.
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Fig. 6. Eigenfrequency curves for Hauger’s column for various values of the nonconservative parameter o.

Table 2
Comparison of critical load for the Beck’s, Leipholz’s and Hauger’s column (« = 1.0)
Author—year—reference a=1.0

Os, O, Oty
Beck—1952—]2] 20.051 - -
Leipholz—1962—(28] - 40.70 -
Hauger—1966—(29] - - 158.20
Stability Handbook—1971—{[30] 20.05 40.70 158.20
Rao and Rao—1975—[22] 20.05102 40.05376 150.64225
Leipholz—1980—(6] 20.30 40.05 150.80
De Rosa and Franciosi—1990—{31] 20.05 40.05 150.20
Glabisz—1993—(32] 20.05095 40.0537 150.6415
Katsikadelis—2007—[33] 20.06 40.08 150.75
GDQ* 20.05095 40.05374 150.6416

“Results obtained by the proposed formulation using a 51 points Chebyshev—Gauss—Lobatto grid distribution.

Table 3
Critical load for the Beck’s, Leipholz’s and Hauger’s column for an increasing the number of grid points ./’of the Cheby-
shev—Gauss—Lobatto distribution

Number of points A" Beck Leipholz Hauger
0, (x=10) 0, (x=10) Oy, (1=1.0)

13 22.14198 42.33998 152.86992

17 20.23291 40.23906 150.7663

21 20.06358 40.0665 150.65013

25 20.05168 40.05447 150.64211

29 20.05099 40.05378 150.64163

31 20.05097 40.05375 150.64161

51 20.05095 40.05374 150.6416

The proposed GDQ formulation has also been applied to others boundary conditions, namely the
pinned—pinned beam, the clamped—pinned beam and the clamped—clamped beam. In Table 4 only a numerical
comparison of the GDQ critical loads for « = 1.0 with some literature results is presented. An extensive
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Table 4
Critical load for the pinned-pinned, clamped-pinned and clamped—clamped beam subjected to Beck’s, Leipholz’s and Hauger’s columns
(. =1.0)

Author—year—reference =10

Pinned—pinned Clamped-pinned Clamped—clamped

O5. Or, On. Os. Or., On,, Os. Or. On.,

Hauger—1966—{29] - 18.96 62.28 - 57.95 402.3 - 81.37 328.0
Stability Handbook—1971—{[30] 9.87 18.96 62.68 20.20 57.95 402.3 39.50 81.37 328.00
Leipholz and Bhalla—1977—{34] - - 61.866  — - 313.6 - - 375.2
Leipholz—1980—[6] - 18.96 61.866  — 57.00 313.6 - 80.26 375.2
Sugiyama and Mladenov—1983—([35] — - 61.866  — - 313.49 - - 375.01
De Rosa and Franciosi—1990—{31] - - 61.85 - - 312.22 - - 373.1
Ryu et al.—2000—][25] - - 61.95 - - 313.82 - — 375.35
GDQ* 9.8697 18.9563 61.8667 20.1363 57.0077 313.5038 39.4785 80.2558 375.0196

4Results obtained by the proposed formulation using a 51 points Chebyshev—Gauss—Lobatto grid distribution.

discussion on the boundary conditions effect on the stability of conservative and nonconservative loaded
columns was given by two of the authors in a previous work [27].

5. Nonclassical stability problems

In this section, the unified discretized GDQ equation is characterized for four different nonclassical
nonconservative stability problems. First, a uniform cantilever column subjected to a quadratic distribution of
subtangential forces is studied. Next, a linear and a quadratic tapered cantilever beam under a compressive
concentrated subtangential force acting at the top of the beams are investigated. Finally, a linear tapered
circular beam with varying material properties along the beam length is considered.

In the previous section it has been shown that for the uniform beam problem the divergence type instability
occurs for a zero value of the lowest eigenfrequency w; = 0, while the flutter-type instability takes place when
the two lowest eigenfrequencies, w; and w,, meet each other becoming complex conjugate. In this section, as
well known, it is shown that flutter for tapered beams can take place for higher frequencies with respect to the
first lowest two.

In each case investigated, the parametrical study for o varying from zero to one was carried out by adopting
a Chebyshev—Gauss—Lobatto spatial grid with 51 points.

5.1. Cantilever beam with quadratic distribution of subtangential forces

A uniform cantilever beam clamped at x =0 is considered subjected to a quadratic distribution of
subtangential forces ¢,(x) = ¢o(L — x)? and zero concentrated tip force P = 0, as shown in Fig. 3(d). The axial
load at the grid point of abscissa x; is N(x;) = qo(L — x:)} /3. The discrete governing equation can be obtained
from the general relations equation (30) by simply specifying the axial force and the nonconservativeness
parameter. In Fig. 7 the eigenfrequency curves are represented for o varying from 0.0 to 1.0 in terms of the
dimensionless load parameter Q, = qoL’/EI and the usual dimensionless frequency parameter.

It can be noted that the stability curves are similar to those of Leipholz’s and Hauger’s problems. The value
o = 0.5 denotes the limit between divergence and flutter instability. Compared to Leipholz’s and Hauger’s
cases, it can be seen that the minimum critical flutter load is not realized for oo = 1.0 but for a smaller amount
of the nonconservativeness of the applied loads.

Boris Shvartsman [36] has observed that for Beck’s, Leipholz’s and Hauger’s column problems the critical
divergence load for o = 0.5 is always four times bigger than the critical load for conservative loaded system,
i.e. o = 0.0, as reported in the first three rows of Table 5. It should be noted that this consideration holds also
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Fig. 7. Eigenfrequency curves for a straight uniform column subjected to a quadratic distribution of subtangential forces ¢,(x) =
qo(L — x)? for various values of the nonconservative parameter o.

Table 5
Critical divergence loads of the uniform beam for « = 0.0 and 0.5 obtained by using a Chebyshev—Gauss—Lobatto grid distribution with 51
points

Load case Critical load o = 0.0 Critical load o = 0.5
P(L) 2.4675 9.8700
q,(x) = q, 7.8374 31.3458
q,(x) = qo(L — x) 32.2020 128.8180
4,(x) = qo(L — x)? 81.7708 327.0843

for the case under consideration, as shown in the last row of Table 5. This interesting result was not proven
mathematically and might be a subject for a further study.

5.2. Linear tapered circular beam

Let us consider here a linear circular tapered cantilever beam of length L clamped at x = 0. The beam is
considered subjected to a concentrated compressive subtangential load P at x = L, as shown in Fig. 8(a).
The radius of the beam varies as follows:

w=froa(1-5)) ®

where r; = r(L) is the radius of the circular cross-section at the top of the beam, i.e. for x = L, and 5 is the
geometrical tapered parameter. For a null value of the tapered parameter, the uniform column is represented.
For a tapered parameter # = 1.0 the beam radius at x = 0 is twice the radius at x = L. The constant axial load
at the grid points is N(x;) = P. Once the beam cross-sectional area 4; = 4(x;) and moment of inertia I; = I(x;)
at the grid points are calculated, the discrete field and boundary governing equations are easily obtained. In
Fig. 8(b)—(d) the eigenfrequency curves are presented for three different values of the tapered parameter,
namely # = 0.5 in Fig. 8(b), n = 1.0 in Fig. 8(c) and # = 1.5 in Fig. 8(d). The dimensionless load parameter is
assumed in this case as Qpy = PL*/EI, where I; is the moment of inertia of the cross-section at x = L. The
critical loads for o = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 and for the different values of the tapered parameter are
collected in Table 6.

Obviously, for fixed properties of the right-hand side of the beam (x = L), increasing values of the tapered
parameter results in bigger natural frequencies as well as critical loads, as it can be seen by comparing the plots
in Fig. 8(b)~(d) and numerically from Table 6. It is interesting to note from Fig. 8 that the divergence
instability range decreases for increasing tapered parameter. In fact, for # = 0.5 the column is unstable for
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Fig. 8. (a) Linear tapered cantilever beam with circular cross-section subjected to a compressive concentrated subtangential force at

x = L. Eigenfrequency curves for various values of the nonconservative parameter o in the case of (b) tapered parameter n = 0.5,
(c) tapered parameter # = 10 and (d) tapered parameter n = 1.5.

Table 6
Critical load for the linear tapered Qpr, symmetric tapered Qpr and Beck’s Qp,s columns for various values of the parameters # and y
o Qpr (linear) Qpr (symmetric) Opm
n=0.5 n=1 n=15 n=0.5 n=1 n=15 n=-0.5 n=-—1 n=-15 y=1
0.0 7.5896 16.4639 29.5567 1.7122 1.0982 0.6334 3.3516 4.3465 5.4354 4.1245
0.2 10.6074 23.8276 44.2205 2.3048 1.4739 0.8451 4.5125 5.8397 7.2803 5.6359
0.4 22.2086 58.6041 89.2233 3.6554 2.3117 1.3031 7.1605 9.1661 11.3458 9.5147
0.6 35.7779 63.9863 102.7609 10.8766 6.9831 4.2356 23.5209 33.0862 45.465 23.4095
0.8 41.0242 78.4594 137.6707 11.429 7.1323 4.2171 26.1774 37.8375 53.2937 26.1952
1 50.3313 104.0404 200.9007 12.6084 7.6137 4.3696 30.7456 45.5436 65.2767 31.253

Results obtained by the proposed formulation using a 51 points Chebyshev—Gauss—Lobatto grid distribution.

divergence when o <0.4 while for n = 1.5 divergence appears only when o<<0.3. This can be attributed to the
shape effect that reduces the possibility for divergence instability for increasing values of the tapered
parameters.

In particular in Fig. 9, the eigenfrequency curves for n = 2.0 show that divergence appear only for 0<<0.2. It
is remarkable to note that for «>0.9 flutter instability takes place because the second and third
eigenfrequencies coalesce (dotted lines in Fig. 9), for a much bigger value of critical load if compared to
the case of o = 0.8. For o = 0.8, in fact, the critical load parameter is Qpy A 25 while for « = 0.9 the critical
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Fig. 9. Eigenfrequency curves for various values of the nonconservative parameter « for a linear tapered cantilever beam with circular
cross-section subjected to a concentrated compressive subtangential force at x = L for a tapered parameter n = 2.0.

Fig. 10. Eigenfrequency curves for various values of the nonconservative parameter o for a linear tapered cantilever beam with circular
cross-section subjected to a concentrated compressive subtangential force at x = L for a tapered parameter n = 5.0.

flutter load jumps at Qg = 45. The shape effect can thus be important in the design with respect to the
system critical flutter load. It has been shown, in a earlier work of two of the authors [37], that a similar
behaviour happens in plates subjected to nonconservative subtangential forces for certain ratios of the plate
dimensions.

It should be noted that by increasing further the tapered parameter flutter exists because the third and
fourth eigenfrequencies coalesce for some values of the nonconservativeness parameter, and so on. For
example in Fig. 10, where # = 5.0, it can be noted that for increasing values of o, flutter takes place because
higher frequencies coalesce with a great benefit of the system critical load. For instance, at o = 0.8 the critical
flutter load is Qpz  ~ 175 while for o = 0.9 it reaches approximately the value Qpr = 275.

5.3. Symmetric tapered circular beam
Here a column of length L clamped at x = 0 and subjected to a concentrated compressive subtangential

force at the beam’s end is considered. The internal axial load at the grid points is N(x;) = P. The beam radius
in this case is assumed as

Hx) =1y {1 n %(x2 _ Lx)] , (33)
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where r;, = r(L) and 7 is still a sort of tapered parameter. The radius of the beam circular cross-section at
x = 0 and Lisequal to r;. For n = 0 the uniform column is reproduced. For 7> 0 the beam is characterized by
a contraction of the cross-section dimension that is maximum at the mid-length of the beam and varies with
quadratic law. When 7 <0 instead, the cross-section increases with quadratic law from the ends to the mid-
length of the beam. For a given tapered parameter, once the beam cross-section area 4; = A(x;) and moment
of inertia I; = I(x;) at the grid points have been calculated, the discrete governing equations are obtained.
Results are represented in Fig. 11 for increasing values of the tapered parameter y = 0.5, 1.0, 1.5 and in Fig. 12
for decreasing values of the tapered parameter y = —0.5, —1.0, —1.5. The dimensionless load parameter, Qpr,
is the same defined in Section 5.2.

Beside the expected shift of the eigenfrequency curves in terms of frequency and critical load, it can be noted
that the pattern of the eigenfrequency curves does not change much for changing values of the tapered
parameter. All the six cases represented in Figs. 11 and 12 are unstable for divergence in the range ¢ <0.5 and
for flutter for o> 0.6. From this results it can be stated that the column can reach flutter instability for « = 0.5
only in the case of uniform beam, because even a slight symmetric tapered effect leads the case of @ = 0.5 to be
instable for divergence. Therefore, it can be assumed that in real structures, where small shape imperfections
are always present, flutter instability is never realized for o = 0.5.

In most of the cases of Figs. 10 and 11 the maximum critical load is reached for o = 1.0. With respect to the
linear tapered case described in Section 5.2, it can be observed that these quadratic shape effect has less
consequence in the design of beams against flutter instability. For the six values of the tapered parameter,
critical loads for several values of the nonconservativeness parameter are collected in Table 6.
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Fig. 11. (a) Symmetric tapered cantilever beam with circular cross-section subjected to a concentrated compressive subtangential force at

x = L. Eigenfrequency curves for various values of the nonconservative parameter « and for (b) tapered parameter n = 0.5, (c) tapered
parameter # = 1.0 and (d) tapered parameter n = 1.5.
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Fig. 12. (a) Symmetric tapered cantilever beam with circular cross-section subjected to a concentrated compressive subtangential force at
x = L. Eigenfrequency curves for various values of the nonconservative parameter o and for (b) tapered parameter 7 = —0.5, (c) tapered
parameter 7 = —1.0 and (d) tapered parameter n = —1.5.

5.4. Uniform beam with varying material properties

In this last example, a uniform cross-section cantilever beam with varying material properties along the
beam length is considered. The beam, clamped at the bottom and free at the top, is subjected to a concentrated
compressive subtangential force at the free end. In particular, it is considered that the modulus of elasticity
E(x) and the material density u(x) of the beam at the generic abscissa x can vary as

X
-2

ueo = [1+9(1-3)] B =Eo[t+9(1-7)]. (34)

where u; = w(L), Er = E(L). The parameter y in Eq. (34) is thus used to define the amount of material
properties variation between the bottom and top of the column.

In Fig. 13 the eigenfrequency curves for the case under consideration y = 1.0 (continuous line) are
overlapped with the solution for the uniform Beck’s column y = 0 (dashed line) presented in Fig. 3. Assuming
the dimensionless load parameter as Qg,, = PL*/E;I, implies that at x = 0.0 the beam with y = 1.0 has
modulus of elasticity and material density twice of Beck’s column. It is thus easy to note from Fig. 13 that
increasing stiffness and material density of the column in proximity of its base (case y = 1.0) induce a great
benefit in the design against instability in terms of critical load. In addition, it can be seen that increasing the
parameter y reduces the range for which the system may buckle for divergence. For example while Beck’s
problem (case y = 0.0) undergoes divergence for values of «<0.5, only values of «<0.4 induce divergence
in case of y = 1.0. Critical load for the case of y = 1.0 and for several values of o are finally summarized in
Table 6.
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Fig. 13. Eigenfrequency curves for various values of the nonconservative parameter o for Beck’s problem (y = 0) in comparison with those
obtained from a geometrical uniform beam subjected to a concentrated compressive subtangential force at x = L with material tapered
parameter y = 1.

6. Comments and conclusions

In this paper, a GDQ-based algorithm for the determination of the frequencies of vibration of beams
loaded by conservative and nonconservative forces is presented. First three classical stability problems have
been used as benchmark cases to prove the reliability of the proposed approach. After that some nonclassical
stability problems of tapered beams with geometrical varying properties have been investigated. Finally, the
new aspect regarding the effect of variable mechanical properties on the stability of a uniform beam has been
studied.

For the uniform beam problem the flutter-type instability takes place when the first two lowest
eigenfrequencies coalesce. It is shown that for the nonuniform beam problem the flutter-type instability for
certain values of the tapered parameter and nonconservativeness of the applied load may occur when the
second and third eigenfrequencies meet each other becoming complex conjugate.

For each case a parametrical study for various values of the nonconservativeness of the applied load
(0.0<a<1.0) was performed and shown through the eigenfrequency curves.

For all the cases considered it has been noted that: the conservative loading condition (¢ = 0.0) is the more
susceptible of instability being associated with the lower critical load; the eigenfrequency value at which flutter
takes place increases for increasing values of the nonconservativeness of the applied load. In the case of
o = 1.0, namely when purely nonconservative forces are applied to the systems, only flutter-type instability
occurs.

The proposed numerical procedure has been demonstrated to be fast, stable and accurate, presenting results
in excellent agreement with the exact solutions.

Thanks to these benefits, the GDQ method could be efficiently applied to solve linear and nonlinear damped
stability problems for nonuniform cantilever beams [38]. Moreover, the present approach could be extended to
situations in which coupling between the various forms of motion such as bending, shear and torsion takes
place.
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